Boundary NLC graph grammars—Basic definitions, normal forms, and complexity

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial properties of boundary NLC graph languages

Node label controlled (NLC) grammars are graph grammars (operating on node labeled undirected graphs) which rewrite single nodes only and establish connections between the embedded graph and the neighbors of the rewritten node on the basis of the labels of the involved nodes only. They define (possibly infinite) languages of undirected node labeled graphs (or, if we just omit the labels, langua...

متن کامل

NLC-2 Graph Recognition and Isomorphism

NLC-width is a variant of clique-width with many application in graph algorithmic. This paper is devoted to graphs of NLC-width two. After giving new structural properties of the class, we propose a $O(n^2 m)$-time algorithm, improving Johansson's algorithm \cite{Johansson00}. Moreover, our alogrithm is simple to understand. The above properties and algorithm allow us to propose a robust $O(n^2...

متن کامل

On the Complexity of Dualization of Monotone Disjunctive Normal Forms

We show that the duality of a pair of monotone disjunctive normal forms of size n can be tested in n oŽlog n.

متن کامل

Temporal Graph Traversals: Definitions, Algorithms, and Applications

A temporal graph is a graph in which connections between vertices are active at specific times, and such temporal information leads to completely new patterns and knowledge that are not present in a non-temporal graph. In this paper, we study traversal problems in a temporal graph. Graph traversals, such as DFS and BFS, are basic operations for processing and studying a graph. While both DFS an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Control

سال: 1986

ISSN: 0019-9958

DOI: 10.1016/s0019-9958(86)80045-6